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ABSTRACT

The maximum strength analysis of initially imperfect, axially compressed,
orthotropic, sandwich and eccentrically stiffened,circular cylindrical shells
has beer developed through the use of Reissner's variational principle,
von Kirmin-Donnell kinematics, and a deformation theory of plasticity.

For a given material and for the special cases of isotropic sandwich
cylinders and conventional cylinders with eccentrically located longi-
tudinal stiffeners, the results of the analysis reflect significant
reductions in load-carrying capability in the range of "effective"

radius-to-thickness ratios of practical interest.
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FOREWORD
The work reported herein constitutes a& portion of & continuing effort
being undertaken at Stanford University for the U. S. Army Aviation
Materiel Laboratories urder Contract DAAJ02-68-C-0035 (Task 1F162204A17002)
to establish accurate theoretical prediction capability for the static and
dynamic behavior of aircraft structural components utilizing both con-
ventional and unconventional materials. Predecesscr contracts supported
investigations whicl! led, in part, to the results presented in references
4, 15, 16, 17, 19, a~d 21.
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INTRODUCTION

The challenge of designing lightweight structures with high strength and
stiffness for aerospace applications has not yet been met even though
significant advances have been made in vehicle capability. One of the
fundamental problems precluding true structural optimization is that the
most common structural element for resisting compression loadings, the
thin shell, can be analyzed for design purposes only on a semi-empirical
basis., The history of the 40-year-old enigmatic thin-shell instability
problem through 1967 is given in several recent survey papers by Hoffl’2
and Stein3. The basic reasons established for the discrepancy between
prediction and actual performance of thin shells in compression are the
effects of prebuckling deformations, initial imperfections in shell
geometry, and boundary conditions. Interestingly, except for noting

the theoretical limitations of the linear-elastic theories surveyed,
neither author discusses nor assesses the quantitative effects of inelastic
deformations on the maximum strength (initial buckling load) of cylindrical
shells in axial compression. The extreme importance of inelastic deform-
ations in determining the maximum strength of such shells has been brought
out recently by Mayers and Wesenberg&. They determined that, in the

range of shell radius-to-thickness ratios of practical interest, sign:.-
ficant maximum-strength reductions are obtained relative to predictions
based upon any theory restricted to linear-elastic material behavior.

Since thin shells for resisting compression loads appear in aerospace
structures in either stiffened or sandwich rather than pure monocoque

form, the "effective' radius-to-thickness ratios are in the range 50-2590.
The low ratio is mentioned specifically by Hoffl. For the range 50-250,

it is apparent that the effects of initial imperfections, the main
contributor to theory-experiment discrepancies in thin, unstiffened

shells (radius-to-thickness ratios > 250), must be minimized and the
effects of inelastic deformations maximized in establishing maximum
strength. This maximum-strength problem, with inelastic deformations
considered, is not to be confused with the plastic_buckling of

shells treated, for example, by Lee5 and Ba:termanb. Such shells are




prone to be inefficient compared with shells which, if deveid of initial
imperfections, would buckle at the classical tickling level of the

7 8

linear theory arrived at independexntly by Timcshenko’, lorenz , and

SOuthee119 about 60 yeais ago.

Now, in view of the results of reported compression tests on large-scale
sandwich and stiffened shells (references 10, il, 12) in the radius-to-
thickness-ratio range 45-220, maximum calculated stresses {ndicate the
presence of inelastic deformations at maximum load. Therefore, in view
of the main conclusion of Mayers and Hesenberga and experimental evidence,
the present study has been undertaken to determine the influence of
inelastic deformations on the maximum load of initially imperfect, axially
compressed, circular cylindrical shells of stiffened aad sandwich con-
struction. For the latter, considerations of the face-dimpling and
face-wrinkling modes of instability have not been considered.

The present study follows the approach used in reference 4 and differs
from it only in the provision of appropriate mechanisms for describing
orthotropic sandwich and stiffened shells (ircluding eccentricity effects),
That is, the investigation uses a modified from of Reissner's variational
principle13 in conjunction wit® von Kdrmdn-Donneli shell theory and a
deformation theory of plasticity. Reissner's variational principle not
only permits the selectior. of the stresses independent of the displace-
ments, but also facilitates the incorporation of inelastic effects into the
analysis, Confidence in the inelastic analysis based on Reissner's
principle has heen established in reference 4 by comparing a special

case of a purely elastic sclution with that obtained by Kempner14 through
ugse of the minimum t-iel potential energy principle. Similar procedures

were follcwed by Mayers et al.ls’16

with respect to both plates and
circular cylindrical shelis. With confidence previously established,
ma¥imum-strergth, load-shortening curves have been obtained.for sandwich
shells (isotropic cores) and axially stiffened shells (eccentricity
effects included) of several different materials. Because of the
eigunificant materfial dependence of these curves, it i3 reasonable

to conclude that inelastic deformations must be included indetermining

N




the maximum strength of sandwich and stiffened cylindrical ghells in
axial compression. Although only specific illustrations have besn given
for the two types of shells, the procedure is general and may be
followed for any set of geometric end material shell parameters corre-
sponding to sandwich shells witk orthotropic cores and orthotropic
shells with eccentrically located stiffeners.




GENERAL TEEORY

STATEMENT OF PROBLEM AND BASIC ASSUMPTIONS

The general problem studied is the maximum strength of orthotropic
séndwich and stiffened (eccentricity effects included) circular cylindri-
cal shells in axial compression. The solutions are obtained through the
use of a modified version of the Reissner principle, the von Xdrmdn-
Donnell strain-displarement relations, and a deformation theory of
plasticity. Since no unloading in the nonlinear, inelastic range occurred
in the monocoque shell analysis of reference 4, it is assumed that the
terms nonlinear elastic and inelastic can be used interchangeably. For
the sandwich shells, no provision is incorporated to allow for the face -

wrinkling and face-dimpling modes of instability.

The model used to describe stiffened and sandwich cylindrical shells is
shown in Figure 1 and comprises a two-element cro:. section and core of
finite tiansverse shear stiffness in both the xz- and yz-planes,
respectively. The effectiveness of this model was demonstrated by
Mayers and Chu17 in their maximun-load predictions for sandwich plates.
The two-element section with the core rigid in shear has been employed

4,15-19 in their extensive naximum-strength studizss of

by Mayers et al,
plates and cylindrical shells to avoid the complexity, due to inelastic
effects, of integrating a nonlinear stress distribution through the

thickness.

The strain-displacement equations used in the present analysis are those
of von Karmdn-Donnell for shallow, initially imperfect, circular cylin-
drical shells. Since the magnitudes of both deflections and rotations
are small as determined by Mayers and Wesenberga, the use of the von

Kdrmdn-Donnell strain-displacement equations is justified.

BASIC EQUATIONS

The von Kdrmdn-Donnell strain-displacement relatioms,modifiel to include
the effects of initial imperfections, are well known (fur example, see

reference 4); they are given here as
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The curvature-displacement equations have been modified to include the

effects of transverse shear (for example, see reference 17) and are given
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VARIATIONAL PRINCIPLE

Because of its proven success in determining the maximum strength of plates
and shells (see references 4, 15, and 17), the Reissner principle is
selected for application in thir problem. For prescribed surface displace-

rents (controlled end shortening), the Reissner functional is simply
S e.+ 3¢ + 7 - T s T .. - F'idv
FTxx yy Xy Xy + ‘yz'zy t gk T Y %

where F' 1is th: stress energy density. F' is a function of the
stress2s such that the strains are related to the stresses by the rela-

tiouships
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The functional given by equatic> (4) {s utilized in the indirect varia-
tional approach to develop Euler equation boundary conditions for both
orthotropic sandwich and stiffened cylindrical shells in Appendixes I
and 1I, respectively, For problems involving linear-elastic material
behavior, F' becomes the complementary energy density., As showm in
references 4, 15, and 18 for a nonlinear elastic material, F' is given

by
Ceff
! =
F feeff d° £s (6)

0
The relationship between ¢ £ and ¢ £f is given by the Ramberg-
e e

Osgood20 three-parameter representation of a uniaxial stress-strain curve
in the form

[+ o
eff effiN
Cegr~ E T K ( E ) ©)

wvhere K and N are material constants and depend on a given material,
Upon substitution of equaticns (6) and (7) into equation (4) and sub-

sequent integration, the Reissner functional becomes

o e o N&ll
- J|-eff | KE ["eff v
" jﬂ; x x a e + Txyyxy Txz"xz + Tyzyyz [ 2E + N+1( E ) ]‘
(8)

Considerationn of purely elastic core behavior, and integration over the

crosa section results in the expression

U" 7! a"
R RN A
y Xy E x

S;_ b= Xy tg "xz Tzz
" ”
s -E ey + E 7xy th [ + 7yz]




vhere w = x/L, ¢ = y/2nR,and V -nthR. The primed and double-primed

quantities refer to the midsurface and bending contribucions, respec-

tively., The subscripts t and b refer to the top and bottom faces,

respectively, of the model cross seztion,




METHOD OF SOLUTION

ISOTROPIC SANDWICH, CIRCULAR CYLINDRICAL SHELLS

Although the general theory has been established for sandwich shells with
orthotropic cores, the application is made herein to the special case

of an isotrcpic core. Thus, the following simplifications can be made!

- -
T H

G = (; =G = L = D
Xz yz c ¥ 2
x2 ¥z
(10)
c = -—E-—
xy 2(1+v)

It can be verified also that
' ' Py | '
1 ("e:-‘f)2 s ¥ 1 [ (< F (°5 ¥ ’x V(%%
= —_—t] | = = —~l+ - 2v (=
4 E t E b 2 E E E E /

," 2 'o; IS"_
201 i
+..(.~w)(E +(E +\E
(a; )(o'; (T; )2
- 2v \'-»;,’-_.— = + 2(1+v) —y—E
(11)
Substitution of equations (10) and (11) into equation (9) with Poisson's

ratio taken as 0.5 (incompressible materizl assumption justified a

posteriori in RESULTS AND DISCUSSION) leads to the result

11,41 g ot g"
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t b :

Displacement, Stress, and Shear Strain Formulations

The displacements from the initial shape are selected to be

S X Ty an 2=y
w h(g0 + ;11 cos ~ cos Y + ;20 co S + §02 cos \ (13)
b3 Y X
u = ~ex (14)
v=_ {15

where e 1is the prescribed unit end shortening. These displacements
are the same functions as those used in reference 4 with the radial
displacement identical to that of Kempnerla. The rationale underlying
the use of expressions for u and v involving no free parameters has
been demonstrated and clearly justified in references 4 and 15.

This significant simplification of the expressions for the midsurface
displacements permits the inplane equilibrium equations in the x- and
y-directions to be satisfied independently of the magnitudes «f the

free stress coefficients.

From the findings of Mayers and wrenn21 and Tennyson &~ 1 Helleszz, as

pointed out in reference 4, an initial radial imperfection shape to

which a cylindrical shell Is particularly sensitive is

X

| it
w = cNS ™ <COSs
0 |§11 N
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The midsurface stresses can be expressed in the form

Q
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The equivalence of the coefficients in -% 5 —% , and -—EI is

established from direct satisfaction of the innlane equiiibrium equations
in view of the fact that the u and v displacements involve no free

paramet s,

The bending stresses are written as

all

X . 2xx 2
T ™ a;, cos g cos g +a,, cos -Tx +ay, cos -—g (20)
all
Y. 2 2
il [bu cos ?: cos Ky + b20 cos zii + b02 cos . (1)
.t"
XY . ix U
X =y [du sin X, sin % ] (22)

The form of the shear strains in the xz- and yz-planes are taken to be
compatible with Yo and w,y respectively., Both expressions are then

written in the form

=T nx 1y i 20X
Yxz lxl‘ sin A‘x cos A‘y + l"x20 sin A‘x 23)
X WY in 24Y
y =T cos sin + T sin (24)
2 in M N Vo2 Ay

Elastic Problem

The von Kdrmdn-Donnell strain-displacement relations, modified to 1nc1udg
initial radial deformations and transverse shear effects (see Appendix I),

are substituted into equation (12) to give

10
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In ccnsideration of linear-elastic behavior, the bending stresses can be
related to the curvatures through Hooke's law, thus modifying the Reissner
functioral of equation (12). This procedure is followed successfully

and justified in references 4, 15, 16, and 17. After setting K = 0

(linear elastic material), equation (25) is rewritten as

v 1% 12 o 12
= X =2 i 4 &
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’ 00

.[l
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c" h all
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This modified form of the Reissner functional leaves only the displaceﬁ

ments and midsurface stresses to be determined by the variational
procedure. The all-elastic, load-shortening curves are established

by seeking a staticnary vaiue of tke Reissner functional in equation (26)
with respect to the free parameters gij’ Aij,r%i , Pyi , and o/E (see
Appendix I11). The resulting set of equations isreducibie to four
equations in the four =ikaowms /L, €110 E20° and €92+ These equations are
then used to construct the elastic, imperfection- ana shear parameter-
dependent, load-shortening curves shown in Figure 2 for representative
values of the buckle wave parameters u, T, and § and the core

transverse shear stiffness parameter [,

Inelastic Problem

Equation (25), consisting of 17 free parameters, can now be utilized for
the inelastic problem. The additional parameters over the four required
for the elastic solution appear because the bending stresses require
seven additional parameters. Neither these seven additional free
coefficients a1 3500 3520 bll’ b20’ b02’ and d11 nor the six mid-
surface stress cocuponents All’ A22’ A13, A31, AZO’ and AO2 can be
eliminated in terms of the 511, 520, §02’ and o/E because of

the highly nonlinear inelastic contribution to the Reissner functional.
As a result, the extrema of equation (25) are found with respect to the

17 unknowns by analytic minimization of the Reissner functional

and subsequent numerical solution of the resulting nonlinear algebraic
equations, A (R/h) - dependent, load-shortening curve is obtained

and presented in Figure 3 for a 2024-T3 aluminum sandwich cylinder
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with an isotrcpic core. The uniaxial stress-strain curve of the face

sheet material is shown in Figure &,

ORTHOTROPICALLY STIFFENED CIRCULAR CYLINDRICAL S:EELLS

A stiffened,circular cylindrical shell is represented by a two-element
model with a core that is infinitely rigid in shear (see Figure 1). The
model is allowed the freedom of variakle inplane and bending stiftmnesses
to account for the orthotropic effects of stringers and rings in the
longitudinal and circumferential directions, respectively. The general
Reissner functional, represented by equation {(8), with transverse shear

effects neglected is then integrated over the thickness of the model to

obtain

The effective stress ir both top and bottom faces, modified 20 include
variable stiffnesses in the x- and y-directions, respectively, is

written in the form

U' s 2 ! g 2 ot a" o'
. 2 - [ X o X ] +|-X + y - [ X 4 X ] [ Yy
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For an 1sotroi)1¢;, two-element model, equations (29) reduce to

g' m g' u g" = g"= |
7 y

L " 1‘
g' = g --Z—v— (30)
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Hence, the above exyression is ncw identical to thet used in references
4, 15, 16, 18, and 19 for isotropic plates and shells, Now, substitu-
tion ¢f equation (28) into equation (27) leads to the following result

spplicable to orthotropic two-element media undergoing nonlinear-elastic

deformations:
u" ‘[7J1 o' o’ T!
BV X X e E
EV ) l E %« + % €y +E 7
17" " 1) ' 2 1 2
“x fx :EZ ' 1 1 (% 1 fx
-t n " 1 - o | —— D —=
tUE & T ey g 7 2 s; E M s; E
1 al al 3 T' 2 1 all 1 0" 2
- 222 = ) S a2
s E E s E ] E s \ E
xy X y
all cll T" o N+1
. (_X) (_x) + = ()l -1 K eff
8 E E s E 2 (W) E
Xy t
N+1
g
+ (—eéf) : dnde : (32)
b

Correlation of Stiffness Parameters

In reference 4, the thickness t of the homogeneous, isotropic, circular
cylindrical shell is related to the distance h separating the two

faces of the two-element model by equating the classical buckling stress
of the homogeneous, isotropic cylinder to that of the two-element cylin-
der. For the orthotropically stiffened shell, a similar procedure is
followed whereby the classical buckling stresses of the stiffened shell
(see reference 23) and orthotropic, two-element model are equated to
establish expressions relating the bending and midsurface stiffnesses of
the stiffened shell to those of the orthotropic, two-element model

(see Appendix IV), The resulting relationships correlating the stiffi.css
parameters are derived in Appendix IV, first on the basis of zero stiff-
ener eccentricity effects and then with eccentricity effects included,.

For the former case, the correspondence of stiffness parameters is

15




| =%

D /2::f D ErI
l-v v = | Lnr
Xy t )
¥ (33)
D_ /2t _l?_rl_k-r1+l(Gst 6 dr
Xy f T 2 272 \Td 0
EsIs EtIt
"2 (" a *x m)]
Ex z:]-'g s?
zth k‘ x
E k1
= — = g' (34)
t k. y
2
G k s'

z_’_f‘f D SR
t
k3+pyk2+ukg4 3

For an isotropic, two-element model, the bending and twisting stiffnesses

are related to the distance h separating the two faces and written in

the form
Et z
b = CEft
X 2
Etfh
Dy s =7 (35)
Et,,h2
i
D =

xy 2(1+v)

On the other hand, for an orthotropic, two-element model, the bending
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stiffnesses must be related to hx and hy, the Jistances separating the
faces normal to the x- and y-axes, respectively, and hxy’ a fictitious
weighted average of hx and hy. These h's are then relatasd to the
bendirg and twisting stiffnesses by

D = __Z_.L. (36)

Etfh:}

xy V. 3
2(1+—"'+-1)

2 2

Substitution of equation (36) into equation (33) leads finallv to the

set of relations
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Equations (37) are reducible to those of the isotropic, two-element model

used in reference 4 by introducing :he simplifications

h =h =h _=h
X y Xy

t=Tt




and by eliminating all quantities subscripted with either s or r.

The resulting expreesion is simply (h/t)2 = 1/3, which is identical to
the expression derived, for example, in reference 4,

The first-order effects of stiffener eccentricity are established in
the detailed development given in Appendix IV. The fundamental bending
stiffnesses appearing in equations (33) and (83) are modified approx-
imately to give

t
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where ;s and z are the distances from the shell median surface to
r
the centroids of the axial and circumferential stiffeners, respectively,

and C 1is a nondimensional ec:entricity constant.

Substitution of equations (36} into equations (38) yields
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Displacement and Stress Formulations

Equations (13) through (22) are used to represent the displacement and
stress distributions; they are of the same form as those selected by
Kempnerla. However, the nondimensionalizing factor h in equations (13)
and (16) has been replaced with the effective thickness, t, of the

stiffened circular cylinder. These two equations are then rewritten as

=t S &7 2nx 2y
w=t (§00 + §11 cos x; cos Ay + §20 cos A + g02 cos Ay) (%0)
=t I A o5 ZRX
W=t (£, cos 5= cos 3=+ g, cos ¢ ) (41)
o X y o X

Llastic Problem

The von K€rmdn-Donnell, strain-displacement relations presented in
Appendix II for the initially imperfect, orthotropic, two-element model
are substituted in equation (32) to give

U'
U" 1 2 X 1 2
./:/.g [ 2 ’x + w,xwo’¥]+ E [v,y + 2 w,y + w,ywo’
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For linear-elastic material behavior, K 1is set equal to zero, and the
procedyre of relating the bending stresses to the curvatures through
Hooke's law can be used again, as in the case of the isotropic sandwich

c¥linder. Equation (42) is then rewritten in the form
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Equation (43) now contains only displacements and midsurface stresses as
variaticnally dependent quantities. A stationary value of equation (43)

is then sought with respect to the free parameters gij’ Aij’ and o/E
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(see Appendix V); the resulting set of nonlinear algebraic equations
is reducible to four equations in the unknowns §11, ;20, 502, and
J/E. These four equations are then used t> construct the all-elastic,
load-end shortening curves presented in Figure 5 for representative
values of the buckle wave parameters ¢, ﬁ, and *© and the orthotropic
] * 1]

shell stiffness parameters s;, s', s' , s', s, s", s"

y’ “xy x’ 7y’ “xy’ e

Inelastic Problem

In the inelastic problem, equation (42) must be used . As pointed out

in the sardwich shell maximum-strength analysis of the present work and
in the conventional shell maximum-strength analysis of reference 4, the
resulting number of free parameters is 17. A stationary vaiue of

equation (42) is sought with respect to iij’ Aij’ aij’ b d

o/E. Maximum-strength, material-dependent, load-shortening curves are

ij» 9130

obtained and presented in Figure 6 for 2024-T3 aluminum and staiuless
steel (1/2 hard)., The stress-strain curve for the latter is shown in
Figure 7. Values of the buckle wave parameters and the stiffness

parameters are the same as those used in the elastic analysis.
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RESULTS AND DISCUSSION

The maximum strength of initially imperfect, axially compressed, isotropic
sandwich and orthotropic stiffened shells (eccentricity effects

included) has been studied through the use of a modified form of Reissner's
variational principle, the von Kdrmdn-Donnell stain-displacement rela-
tions, and a deformation theory of plasticity. Maximum-strength,
material-dependent, load-shortening curves have been obtained for stain-
less steel and 2024-T3 aiuminum cylinders. Thc results are compared with
the load-shortening curves obtained for both sandwich and stiffened

circular cylindrical shells when the materials remain linearly elastic.

In conducting the numerical analyses involving inelastic deformations,
Poisson's ratios v, L and B have each been assigned the value
0.5. Trial computations, in which these Poisson's ratios were varied
between 0.3 and 0.5, indicated that the incompressible-material assump-
tion (that is, Poisson's ratios equal to 0.5) relative to the direction
of loading led to negligible changes in the results based on varying
values of v, Vo and "k' Poisson's ratios py and vy have been
calculated from the reciprocal relations uy = Ey Hx/Ex and vy = Dyvx/Dx

to ensure symaetry in the orthotropic material constant's matrix.

CIRCULAR CYLINDRICAL SANDWICH SHELLS

The effects of transverse shear and inelastic deformations on the maxi-
mum strength of circular cylindrical sandwich shells with isotropic cores
have been established in this analysis. Considerations of the face-
wrinkling and face-dimpling instability modes have been neglected since
the interest herein has been aimed at the bending and buckling in general
instabiiiviy.

Based on all-elastic behavior, transverse shear effects markedly reduce
the maximum load of a cylindrical sandwich shell, as shown in Figure 2.
This trend is consistent with the classical results przsented in reference
24, For 06 = 0.02 (a reasoaable imperfection amplitude for an
"effectively" thick sandwich cylinder), the uppermost curve represents

the all-elastic, load-shcortening curve for an isotropic sandwich cylinder




with a rigid core; I' = 0. The curve for '™ 1 represents a sandwich
cylinder with finite tranverse shear stiffness of the core. The pactic-
ular value of the shear stiffness parameter is representative of the
weak-core materials used in practice. It is noted that for [ = 1, the
reduction in maximum load from that obtained for the sandwich ecylinder
with a rigid core is 6%; thus, for a larger value of T (weaker core),
the reduction in maximum load would be substantially greater. A similar
trend was obtained by Mayers and Chu17 in their maximum load analysis of

isotropic sandwich plates.

Inelastic effects are incorporated into the analysis by introducing
actual stress-strain curves. In the case of 2024-T3 aluminum, the
uniaxial stress-strain curve is shown in Figure 4. As a result, maximum-
strength, (R/h) - dependent, load-shortening curves are obtained and
presented in Figure 3. The upper curves represent all-elastic behavior
for infinite (' = 0) and {inite (I = 1) transverse shear stiffnesses,
respectively. The lower curves show the effects of inelastic behavior

on two 2024-T3 aluminum sandwich cylinders of (R/h)= 200 with [ =0

and ' = 1, respectively. As can be seen, the maximum load is reduced
6% by introducing finite tranverse shear (I = 1) and is reduced

an additional 144 by including the effects of inelastic behavior in the
face sheets. It can be noted also that for a rigid core (I = 0), the
reduction in load-carrying capability, due to inelastic deformations,

is 164, However, as mentioned above for a ccre of finite transverse
shear (T =1), the maximum load was reduced 14% due to inelastic behavior,
Tt might be concluded, therefore, that plasticity affects a rigid-core,
isotropic sandwich cylinder to a greater degree than one with finite
transverse shear stiffness; this trend was noted by Mayers and Chu17

in their maximum-strength analysis of isotropic sandwich plates. This
phenomenon in both sandwich plates and cylinders is attributed to the
fact that the finite transverse shear permits stress relief across each
buckle, causing a lower effective strain and, consequently, less reduction
in maximum load due to inelastic defcrmations., However, from the stand-
point of inelastic deformations alone, this isotropic sandwich shell of

2024-T3 aluminum reflects not only (R/h) - dependence of the load-
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shortening curve for a sufficiently low (R/k) ratio (the same effect
established for conventional shells in reference 4), but a significant

reduction in maximum strength,

ECCENTRICALLY STIFFENED, CIRCULAR CYLINDRICAL SHELLS

The maximum strength of initially imperfect, axially compressed,
eccentrically stiffened, circular cylindrical shells has been obtained
for material properties corresponding to stainless steel (1/2 hard) and
2024-T3 aluminum.

The results of a purely eiastic analysis, presented in Figure 5, reflect
load-shortening curves for integral, longitudinally stiffened, circular
cylindrical shells. The integrally stiffened shell cross section, shown
in Figure 5, is identical in geometry to that used by Card and Jones12
in their studies on the buckling of eccentrically stiffened cylinders.
The values of the buckle wave parameters, namely, p = 0.5 and ﬁ = 0.25,
have been selected to correspond with those of experiment (see reference
12) . A reasonable value of the imperfection parameter, A= 0.5, was
selected; and the value of the eccentricity constant, C = 60, was
adjusted to yield an accurate representation of the effects of eccentric-
ity on the maximum load of both outside and inside, longitudinally
stiffened, cylindrical shells (see reference 12). The upper and lower
curves in Figure 5 correspond to externally and internally stiffened
cylinders, respectively. Both types possess the same integral stiffener
cross section, It can be noted that the externally stiffened shell
carries 38% more axial load than its internally stiffened counterpart,

a result which is consistent with those obtained in references 12 and
23, However, this may not always be the case, due to the findings of
Hutchinson and Amazigozs. They show that for certain ranges of the
curvature parameter, Z =~£§1J1-v2 , an outside stiffened shell is

much more imperfection sengitive than one with inside stiffening. How-
ever, in the present analysis, the stiffened shell configuration is in
the large Z range and, therefore, is out of the region in which an
outside stiffened shell should be any more imperfection sensitive than

one with inside stiffening.
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The effects of inelastic behavior are displayed in Figure 6 by using the
stress-strain curve of stainless steel (1/2 hard), shown in Figure 7,
and perturbing from the free elastic parameters which were used to develop
the all-elastic behavior curves in Figure 5. The results in Figure 6
show that for the externally stiffened shell, the reduction in maximum
load from that obtained in the purely elastic analysis is 23%, whereas
the reduction in load-carrying capability for the internally stiffened
shell is 15%. Thus, it might be concluded that the effects of eccen-
tricity for longitudinally stiffened cylinders are seen to decrease with
the presence of inelastic behavior. This trend was noted by Jones26

in his study of stiffened shells which buckle initially in the plastic
range; it is attributed to the fact that the effective stress is greater
for outside stiffened cylindrical shells at maximum load thar for
cylinders stiffened on the inside., This leads to a larger effective
strain for outside stiffened cylinders and, consequently, a greater
reduction in maximum load due to inelastic behavior. It should be
emphasized that despite the significant reductions in load-carrying
capability due to inelastic behavior, the integrally stiffened cylinders
of the present analysis buckle well below the 0.2% offset yield stress
of the material (stainless steel (1/2 hard)). Therefore, buckling
analyses of the types presented in references 5, 6, and 26 are not
valid for application to the present maximum-strength problem where,
in the absence of initial imperfections, elastic buckling would occur,
After using the stress-strain curve for 2024-T3 aluminum (see Figure 4},
it was determined that the reductions in maximum loads of both outside
and inside integrally stiffened cylindrical shells (with the geometry
shown in Figure 5) from those obtained in the purely elastic analysis
were negligible; that is, essentially elastic behavior governed the
particular shell analyvzed. However, extreme caution should be exercised
in any design procedure involving stiffened shell construction wherein
plastic buckling is precluded, since large reductions in maximum load

can occur for imperfect shells and a variety of materials characterized
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by a small exponent (say, 3-5) in the anberg-Ougoodzo stress-strain

curve representation. This behavior is demonstrated not only in reference
4 but also by the previous results obtained herein for stainless steel
cylinders. In addition, for larger values of n and reduced (R/T)
ratios (for example,75-100), even aluminum cylinders (N ~ 9) will bend
due to imperfections and reach a maximum strength and fail rather than

buckle plastically from the undeformed state,

Correlation between experimental and theoretical results has been
achieved by comparing the maximum compressive load of an outside,
integrally stiffened, 2024-T3 aluminum cylindrical shell of reference 12
(L/R = 4) with the maximum load obtained through the present analysis.
Since the stiffened cylinder edges of reference 12 are clamped arnd those
of the present analysis are "effectively" simply supported, the differ-
ence between the classical buckling loads for clamped and simply supported
edges has been added to the maximum load of the present elastic

analysis for an outside, integrally stiffened cylindrical shell. As a
result, the maximum load agrees with the experimental maximum load of

reference 12 to within 24.

Therefore, it is balieved that sufficient evidence has been given to
conclude that, in addition to boundary conditions, initial imperfectionms,
prebuckling deformations, and eccentricity effects, inelastic deformations
should not bé excluded from initial buckling (maximum strength) analyses
of stiffened, circular cylindrical shells in axial compression. In scale
structures, the most efficient eccentrically stiffened shell (at least
for axial compression) would be one whose (R/t) ratio precludes plastic
buckling, but is not so large for a given material that imperfection
sensitivity and inelastic deformation significantly reduce the initial
buckling (maximum load). A great deal of experimental work is required
on practically fabricated metal shells of various materials in the range
50 < R/t < 250 to discern the relative effects of stress-strain curve

shape and initial imperfections.
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CONCLUDING REMARKS

The maximumestrength analysis of initially imperfect,axially compressed,
sandwich and eccentrically stiffened, circular cylindrical shells has
been undertaken to establish the effects of transverse shear (sandwich

case only), inelastic deformations, and geometry dependence on the
load-shortening curves for given materials. Although numerical results
are given only for the special cases of isotropic sandwich and longi-
tudinally stiffened shells, the theory and solution procedure are
applicable to orthotropic shells in general,.

CIRCULAR CYLINDRICAL SANDWICH SHELLS

In the absence of inelastic behavior, it is demonstrated that transverse
shear deformations reduce.the maximum load-carrying capability.of an
imperfect, isotropic sandwich shell. When inelastic deformations are
takea into account, not only is the maximum load further

reduced, but the load-shortening curves reflect a significant (R/h)-
dependence. This dependence is not evident in any elastic analysis.
Future work should be directed toward establishing the effects of
inelastic deformations in the core in conjuction with failure not only
in general instability (the present analysis) but also in the face-

wrinkling modes.

ECCENTRICALLY STIFFENED, CIRCULAR CYLINDRICAL SHELLS

In the absence of inelastic behavior, it is shown that outside stiffened
cylindrical shells are capable of carrying higher compressive 1lcads

than internally stiffened shells. This result is consistent with thcse
surveyed in references 1-3. However, in the presence of inelastic
deformations, the present analysis shows that the load-carrying capability
of both outside and inside stiffened, stainless steel (1/2 hard) shells

of R/t = 167 is significantly reduced., Corresponding calculations

for 2024-T3 aluminum shells of the same geometry reveal negligible
reduction in the maximum load bused on purely elastic behavior. Thus, cau-
tion should be exercised when dealing with maximumestrength analyses of

shells having relatively low exponents (for example, stainless steel, N=3)
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in the Ramberg-Osgood stress-strain curve formulation. For shells of
materials possessing higher exponents (for example, 2024-T3 aluminum,

N = 9), caution should be exercised as the (R/E) ratio approaches 100.
For such shells, initial-imperfection effects are minimized, but plastic-
ity effects are maximized. Until sufficient experimental evidence ic
developed to prove otherwise, it is believed that the most efficient
longitudinally stiffened shells for axial compression loading are those
which lie between the plastic buckling failure mode and catastropic snap
through failure in a purely elastic mode. In addition, it is shown, on
the basis of the stainless steel (1/2 hard) results, that the marked
difference between the maximum strengths of outside and inside stiffened
cylinders based on all-elastic behavior is significantly reduced when
inelastic effects are taken into account. As a result, the choice of
outside stiffening to achieve greatly increased elastic-analysis-predicted
maximum strength relative to the choice of inside stiffening should be

viewed with discretion.

Although limited numerical data are presented herein, the overall results
are consistent with those established in refercnce 4 for unstiffened
cylinders in axial compression. That is, regardless of the type of
structure (pure monocoque, sandwich, or eccentrically stiffened), it is
obvious that any initial buckling (maximum strength) analysis of
practically fabricated cylindrical shells must include the effects of
initial imperfections, boundary conditions, prebuckling deformations,

and inelastic deformations. The material-geometry combination that is
the most efficient may be predicted from application of the present
theory and analysis procedure for sandwich and eccentrically stiffened
shells to a wide variation in physical parameters. However, without
substantial experimental effort to establish confidence in the analytical
approach, significant weight reduction in aerospace vehicle designs, a

major portion of which involve shell structures, will not be realized.
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Figure 1. Circular Cylindrical Shell With Two-Element Cross Section,
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Figure 2. Purely Elastic, Load-Shortening Curves for Isotropic

Sandwich, Circular Cylindrical Shells.
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Figure 3. Loau-Shortening Curves for 2024-T3 Aluminum, Isotropic
Sandwich, Circular Cylindrical Shells.
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Figure 4, Stress-Strain Curve for 2024-T3 Alwninum.
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Figure 5.

Purely Elastic, Load-Shortening Curves for Eccentrically
Stiffened, Circular Cylindrical Shells With Longitudiral
I.tegral Stringers.
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APPENDIX 1

EULER EQUATIONS AND BOUNDARY CONDITIONS DERIVED
FROM A REISSNER FUNCTIONAL FOR A SANDWICH
CYLINDER WITH PRESCRIBED END SHORTENING

The Reissner functional for prescribed end shortening is defined as

" = - F!
U j j (et Oyey + Tt F T F Ty - FY) AV (44)

The von Karmén-Donnell strain-displacement relations, modified for the
two-element cylinder (see Figure 1), and including initial radial deform-

ation and transverse shear effects, are

1 2 h
=alt "n - - & o
ext b €x = x u’ifZ Vg + wo,xw’x 3 2 (w’xx 7xz,x)
bl
1 w h
€ = 2e"=v, +cw, + = +7 (w, -
Ve YOV 2oy ¥ Voyy TREZ By T 7y )
7 = ! n o L
xyt,b 7xy + 7xy u,y + v,x + w,xw,y + wo,xw’y + wo,yw’x
FEYCAIEE RIS (45)
xy 2 7xz,y 2 ’yz,x

The stresses in the top and bottom faces in term: of the midsurface and

bending components are

g = g!' 40"
xt’b X X

ag = g!' & g"
y

Ye,b (46)

T =1' + 1"
xyt,b Xy Xy

After integration through the top and bottom faces and the core of the

sandwich cross section, equation (44) becomes

L 2xR

U" =t J,. ‘o e +o0 +0 e +3 ¢
8 [ Xe X¢ xbcxb Ye e b Y
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t

c .
% b4 +1 v, +— (1 v _+71 ¥ ) - (F!+F')
Xy, Xy, Xy, Xy, tg Xz’ xz yz'yz t b

t |
o —= L
cf Fc‘ dxdy %7

Substitution of equation (45) into equation (47) leads to

27K 1 2
"=t ‘J + 3 u, +35 w, +w,w
f X, Xy x 2 ’x X 0,X
00 l
1 2 w
+ g +J Vy, +5 VW, +w, w o &
( Ye yb) y 277y yo,y R
T + T vV, +u, +w,w, +w w +w, w
Xy, Xy, x y x 'y X 0,V y o,x

h
+ [0 Y 75 VW -7
( X, xb)Z xx Xz,X

[

t
+ [x 1 1 <
(xyt i} Txyb)h Lw’xy 2 7xz,y 2 7yz,x] + te [rx::yxz
2

2
t ¢1 T
Sl xz vzl (g4 e (48)
+ Tyzyyz] 2 t, G +G ] (Ft+Fb ‘dxdy
Xz yz

The average stresses and the bending moments ave

1
t = -
g 2(c1x+cx)
t
o"=%(u +Cc )
Y t b
T'=%(Tx +Tx})
x 7
v Ve b (49)
M=-tf-;3(a -o)=-tfh3;
X t xb
h
M = -t_ 5 (¢ - )= -t_h "
y fz(yt b £y
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% - =t_h " 49
( xyt xyb) f Xy (49)

Substitution of equation (49) into equation (48) gives

L 2R |
"o ‘ ! l 2
U th ,Jx (u,x + 2 Yoy + w’xwo,x)
00
+ 3’ (v, + Lo 2 + w, w S+t (u, v, +w,w
y ’y 2 ’y ’y o,y R xy ’y ’x ’x H
Mx fX
+ wo,x 'y o,y“’x) EEf (w’xx B zgz,x) - th (w’yy B 7yz,y)
Yo 1 1 e
+ te (w’xy T2 7xz,y T2 7yz,x) + th (szyxz Tyzyyz)
t Tz 12 ’
1l ¢ xz . _yz) - F' {50)
'4:((; +c) | axdy
f Xz yz
with cognizance taken of the fact that
~T ] ] ! ] ]
5F=3%F,60'+-§§,—5c'+§%,—6:' gﬁ—mx+3§—m +-§MF——6M
x X y ¥ My X " M,y ky X
The vanishing of the first variation of U" with respect to 0;, 0;,
! ~
Txy, sz, Tyz, Mx’ My, Mxy’ u, v, w, 7 xz? and 7yz requires that
L 2zR
5UY = 2t ‘ﬁo (u, + i w 2 +w,w )+ & (v
f | x 'x 2 ’x ’X 0,X y 'y
co
1 2 W .
+ 2 \\,y + W’ywo’y = R) + GTxy (h,_'v’ + V’X + w’xw’y
+ wo,xw’y + wo,yw’x) + 3 (5u,x + w,XGW,x + Gw,xwo,x) (51)
o (Bv, +w, bu, + &, w - L (su, + by
y Uy Uy7y ’y o,y R xy Y "X
5Mx
+ &”’Xw’y + GW,yW,x + W’Xwo,y + &'J’ywo,x) = Et—f (w,xx
6M oM
- Tl S B O
xz,x 2t yy yz,y ¢ Xy
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S RRL SANRIES o C SR AR el

yz,X ts "xz,x 2::f yy
b )+ (Bir =3 & o . )+t (67
yz,y te 2 “'xz,y 2 Tyez 2tf xz'xz

+6t vy _+1 6y +1T & ) - l__c szﬁ +:y—251: LA
yz' yz yz7yz 2 e, \G G yz] ~ o

Xz Xz
f \"xz yz

B g B g L 2E 2! F o ! axay -
30y boy - BT)’(Y 6Ty ~ ﬁMx M &‘I) M, mxy‘ Coiet i
(51)

integration by parts, as appropriate, leads to

L 2xR

" - 1,2 aF
6U - th {f {(u,x + 2 W)x + W,xwo’x - aj;( ) &,;(
0

1 w_QF '
+ (v, ts W, w’ywo,y = 30;, ) o' + (u,y + Vv,
JF' ol
+w, w, + wo,x . + wo,yw’x 31 ) GTxy [—Zt (w’xx
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th
£ "xz £ f_}g |
+ == Y _ - —-—l St + y - 61
te [ Xz ze; Xz 2t [ yz Gyz l yz’ dxdy
27R L 2R
+ 2t f or bul dy+2tffa'_ bv| dax
4 % Y

1 L -
- T M y] | dy + th f [cr' (w, +w )
£ 0 0 | Y 7y oy
. + + 1 1 . 2xR
+ Txy \w, w0,11:) th My,y ) te Mxy,x] IO dx
27R L L 2R jJnR 3
L] . -
+ th f Txy 6v|o dy + thf Txy bu |  dx M aw,xl dy
0 0 0 0 e
L
f . lerR ) . LIZnR fﬂR L
- M , dx + 2M l + M & 1
A y 0 Xy 00 % leo Yy
fL ; lZnR 1;4 5 27R o L
+ J M b dx f Yz | dx " M dy = 0
A y vz, 4§y sl 0 xy 57yz|0 y
(52)

For equation (52) to vanish for simultaneous arbitrary variations in

the states of stress and displacement, each of the above terms must
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varish iviependently. The rec-xlitiag faler eonstious and stress-
displacenrnt relatioms sre

F_ad 1.2, L .
3; = v,! + 3 ‘-_" + -‘.!'.‘_ z 5% 1)
2,—'=. + v, 4V, W, +F¥€ w, v, ¥
Ty 54 ¥ 0.X 'Y X 0,¥
Nome:nt-cazeatare relatioms witk traasverse shear effects are

24
L]

R ;
3z, ("n‘ ye,¥ o

-t é :l = o
x,X x¥,¥
155
=* + =" =3
x¥,X ¥.¥
Core-shear equilibrium equatioas ave
b ] - A -z T =0
x,Xx xy,¥y £ xz
(56)

- -t = =19
Feo¥ Xy.x ¢ 32

iateral ecuilibrium equation is




(v, < v‘ | PR 2 ':" :v.! + vo.xi:'y 7))

Schstitetion of equatiom (557 imt> equati~a 57 leads te thr siwplifies,
lateral equilibrice equation

:' !"u + 'o,nb + :’ (v.!! + "o.;r_v:' + 2:‘! ( "!! + uo.“)
1.1 -
+ = + 3‘; al'.n + !l!.” 2 n‘,.‘,) = (58)

Tramsverse shear stress-straia relactiomss are
. =GQ
=z Xz XX

59

_c:
2 y'y

The midsurface stress-displacenert bowndary integrals are

-l L
f:; &) éy (60a)

) 9
L 2r
f = i éx (60b)
¥
() 0
-2 L
- { 60
[ tybvso‘y (60c)
L 2-R
L (604)
A

The remaining boundary integrals are
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. L
-— ¥ T e, dx =

3 ¥ 9,¥% xy¥ x c.X v,
t
e
i 2-2
--—¥W_ S buwi éx=g

2=R L
M dy =
ey 57yz!0 y=0
0
Since the end shortening is prescribed,

5u vanishes at

x =0, L.

remaining boundsary integrals, evaluated at x = 0,L, can be ignored

{%:a)

(61d

{6lc)

(61f)

(61g)

(olh)

(61i)

The

due to the very large L/R ratio assumed for the sandwich cylindrical
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sheil. 1I%2 boccdary comditicas ¢t y = 0, 2R are either comtimuity
'cani:tue: or ceaditioes uhich preclude saxy resuitsst shesar osr circuxfer-
eatial load sloog any gemerator after scbsegaent integration ower the
snell leagth.
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APPERDIX II

EULER IQUATIOXS AXD BOUEDARY COMDITICES DERIVED FROM
THE REISSXIR FUNCTIONAL FOR AKX OXTHOTROPIC,
TWO-ELEMEXT CYLIXDER SITH PRESCRIBED
EXD SFORIESING

The Eeissaer functional for prescribed end shortening is

™ = - . - v - - o 2 g 3>
¢ .[/f R N T L5
¥

vherc the core of the twc-element cylinder has beea assumed rigid in
shear.

The von Kiérmfn-Donnell strain di:yl.~ement relatioms for the orthkotropic,

two-element cylinder, =odified to include initial radial imperfections,

are
h
= [ ] t " o u - _1. o <+ W &-—x v
€x & =€ s 2 °° X 0,x - 2 ’'xx
t,b
1 v h
P = ¢" 4 " = +=-w, + -z xd R
yep YOF VyvT2 “ry%o,y TR 72 Tryy (63)
4 a y' 24" =y, +v, +U, W, +W W, +VWV W, h w,
XY, p XY xy y x x 'y 0,x 'y 0,y ‘% xy Xy
’

waere hx’ hy’ and hxy are introduced to account for bending stiffness
orthotropy. The distances hx and hy separate the faces normal to

the x- and y-directions, respectively, and hxy is a fictitious weighted
average of hx and hy. The orthotropic bending stiffnesses are related

to h,h, and h in the following way:
X v Xy

P

Et b2

Dx =
(64)
Ft h2
D = fy
y 2
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{64)

The stifinesses Dx’ D‘_. and Z)x‘_ couid ve obtained, for exa=ple, fro=

laboratory tests »n the particular orthotropic structure of interest.

The stresses in teras of aidsuriace and bending components are

eb -0 %
- = :. =N :ll
Yoy ¥V (65)
v = ! + -
xy t,b xy xy

After integraticn through the iop and bottom faces of the two-element

section, =quation {(62) becomes

L 2=R ‘
L =t fj = . + . + = € +7 ¢
2 | ¢ *¢ "o v Ye Y T W
00
+1. v +1 i = (FL + r')' dxdy (66)
’ t
Xy, %Y, Xyp XYy by

Wy, +w, w P
X 0,X
c 0
2
+ (0 +z ) (v, +lw,'+w W, -2
s b y 2 o,y 'y R
+ (Txy + ~xy Yy v, +u, +w, w, + w,xwo,y wo,x ,y]
t b
. X W, + (5 -3 ) W,
+ (o . - pxb) 5 XX yt b 2 yy
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|
+ (= -7 )h w - F' + F! ) dxdy €7
XY, xy, Xy *xy ( b’} €7

The average stresses and bending moments are

(68)

M =t

- - n
v £ & T )= h

Xy xyy, i: xy xy

Substitution of equation (68) into equation (67) yields

L.2
1 2
" o ' gl
y" 2: H ‘} (u, + 5 w,x + w’xwo,x

1 2 W
[} - - -
+ oy (v,y + 2 w,y + w'ywo,y R )

+T;cy (u,y+v,x+w,yw, +w W, +w w,)

M

- o] - !
Te; VT Ty e Ty T O ©?

»

which is identical to that derived in reference 4.
The vanishing of the first variation of U" with respect to c;, c;,

' , M, M, M ,u, v, and w leads to the Euler equations and
xy’ x Xy .
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Sourdary conditions, which are derived in dsta{l in reference 4.

Stress-displacement relations:

2E 1.2
36; Usy ¥ 7 Vg ¥ "x'o,x

L}
O U S

- W
acv Yy O,y

AF!

==V, 4+u, +tw,Vvw, +w w, +W w,
atxy x y Xy 0,x 'y c,y X

Moment curvature relations are

M 0L
’
3Mx 2tf xx
QL _ .1 o
BMy th ’yy
aF' =+'1—W)
aMxy tf Xy

Midsurface equilibrium equations are

a', ! =
X'x Xy,y

" +0' =90
aY X Y,y

In view of equation (72), the lateral equilibrium equation is

! 1 1 .
Ux (w,xx + wo,xx) + cy (w, +w Y+ 27 (w, < W
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(70)

(71)

(72)
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The midsurface stress-displacement boundary integrals are

2-R L
f 2! gu] dy = 0 (Tha)
0 0
27R L
j 1;(y vl dy = 0 (74b)
0
0
L
27R
f oy 6v| ax = o (Thc)
0
0
L
2nR
/ T;(y 6u| dx = 0 (744d)
0 0
The remaining boundary integrals are
2nR ‘ 1
] —
/ o' (w, +w ’ ) + Txy (w, + wo,y) + T Mx,x
0 ( 3
1 | |I‘
-—M dw| dy =0 75a)
f 1
' + ' 'r’ + ——
j‘L 'c (v, W ,y) Txy (w wo,x) 2t My,y
0
1 I 27R
- M dw| dx =0 (75b)
L 2nR
2M bwl | =0 (75¢)
Y o0 0
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The boundary integrals at x = 0, L either vanish because the end

shortening is prescribed or can be ignored due to the very large L/R

conditions at y = 0, 2rR are either continuity conditions or conditions
which preclude any resultant shear or circumferential load along arny

t ratio assumad for the orthocropic, two-element cylinder. The boundary
]
i generator after subsequent integration over the shell length.
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APPEXTIX IV

CORRILATION OF THE STITENTSS PARAMETERS OF THE ORTHOTPOPIC
TWO-ELEMENT MODEL TO THOSE OF A STIFFENET
CiRCULAR CYLINDRICAL SHELL

The ciassical buckling stress derived in reference 23 for an axially

conpressed, ring- and stringer-stiffened, circular cylindrical shell is

2 '
- g._c_(E) ‘(1‘*32)2 +Esls 1"3& Erlr
i, 7 \ L) j j dp D
‘(Gst_‘ chr) 32! (79)
"\aop * o |
+12120 ‘ 1+SAS+R:‘:+SR‘:‘rs'
=222 | - ‘
ta - L L
where
2.2 2 z & 4 Z)Z-Z-r)z
_T-I-ZJB(l-B/)—R'+C:B (l+ﬁ X
b - .2
_ 2 (.2 s 4 2\ (Zs)
As-l-zu (B-/)—R+.4 (1+8)(R,
B 2 .22 N (2 % b4 2
_}rs-l-, -2 B (l—v)(—R+—R)+¢B ll-v
2 z A Ze?
+ 28 (1+v) (—;) + 2 B(1+ ) ;25
2 2
+ ;:.482 l2(1 + v) + B2 (1 - _/2)] (-—;)
] 2 { - _ -
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2% 's'(l . ) . B“E] (80)

57




z? - L(1-v)
R2t2
Et3
D= 3
12(1 - v°)
- EsAs
S * Ztd
E A (81)
R=_LL
Etg
4 o MR
L
_ oL
B = o)

The subscripts s and r refer to properties of the stringers and rings,
respectively. Tiie signs preceding the terms linear in Es and Er
(distance from the middle surface of the shell to the centroid of the
stiffener) have been changed from positive to negative, due to the fact
that the z coordinate in reference 23 is measured positive outward,

whereas in the present study, 2z is measured positive inward.

The classical buckling stress of the orthotropic, two-element model is

1 mx 2‘ Dx v Dx + vxD 2

= e = . — XX X3

91 2t ( L) l 1-vov. [ 1-vv Zny] B
f X'y X'y

TE
(82)
D EE /2t
+ y ) 34 + xy f
L-veve n\2R2[E - fu k. + uE - BBy e? 4+
Xy (_z) [ o (Hy v s vy 3 ) y

Xy

This equation is the same as that derived by Stein and Mayers24 when the

transverse shear stiffness 1s infinitely large.

To find expressions relating the bending and midsurface stiffnesses of

the orthotropic, two-element model to those of the ring- and stringer-
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stiffened shell, equations (79) and (82) are equated. For z, =z = 0,

the coefficients of like powers of £ are required to vanish, thereby

leading to the relationships

" -
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Stiffener eccentricity effects introduce a coupling between extension
and bending, as represented by the terms containing ES and ;r in
equaticns (80). However, since the orthotropic, two-element model
does not contain a corresponding set of coupling terms, stiffener
eccentricity effects are included by modifying the bending stiffnesses

D,D, and D as follows:
Xy Xy

L) -
D2ty g [1 N ESIs] e §t2E( T (3)
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(86)

where C 1is a nondimensioral eccentricity constant,
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APPENDIX V

METHOD OF SOLUTION FOR THE ELASTIC, ECCENTRICALLY
STIFFENED, CIRCULAR CYLINDRICAL SHELL
7

Substitution of expressions for the displacements [equations (1l4), (15),
(40), and (41)] and stresses [equations (17), (18), and (19)] into the
Reissner functional given by equation (43), and subsequent integration

of the result, yields

= = S 3 - -
g ZtEE(ZnRL) = - 4% Foo ~ 2o2fo2 “11(F11 + H11)
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‘ . g
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2 2 2
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02 . 420l | TR f(Px\ 4y.2 2
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] O I TR 11 20
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where
s! s!
s' = ——t— (88)
pxsy + Pysx
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T

The midsurfsce stiffness parameters s;, s;, and ';y are, in turn,
related to their stiffened circular cylindrical shell counterparts in

equations (84) and (85) of Appendix IV, and are repeated here in combined

form as
Lt
s.,('£)[1+'§+§+§§(1-v2)
X 1+ Q - vz)i
)
= - = == 2
sy =\E 1+s+n+s:2<gi-v)_ (89)
1+ Q- v)Ss

t
o 3(2)[1+§+§+§m-6l
xy 2[1 + (14v) (R+3) +l-l§(1-v2)(1+v)] +p 4+ (1-D) (b5 4 p R
Mty HS + b

The bending stiffness parameters have been presented in equation (39)

of the text and are listed here again as

hx 1 1l - L ¢ 3 EsIs 48(1 - vxvy) . e 2
=/ =3 ("-" L+ | -¢ 23 (TR
t 1 -y t 1+ (-5 \%
G 1- 3 E I MR - v.v) =
(o [+ el
AR NI A 2 1+ (- DRIT/R
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h -1 }_+ 2t _t = 1 - IE . :X + 1 (Gst + GrJr)
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- 1 -9 t
t
. E I E_I v
T2 (vy a T % £D )J + 2 (1 t2
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s o e

Xy
+3)

- 3,2 v
2 7 — ( E ) ( —§ )] + 2vx (1 +-—§
1+ (1l-v)S t
+Zx)[ R (_t_.)(_z_r)] ) 2(1+l>s
2/ 1+ -HR\VENR 2

t
+3)[ c(1-v2)1‘z'§(2) (z +f§)]
2/ 420+ W @®+S) + 28501 - vH A + v) R

o |m

(90)

The quantities Fij and Hij’ defined in Appendix III, can be used here

if h and T are replaced by t and ﬁ , respectively.

The equations resulting from the vanishing of the first variation of equa-

tion (87) with respect to the free coefficients of the assumed stress and
displacemer.c functions (equations 13-19) are reduced to four equations

in the four unknowns §11’ §20’ 502, and o/E. For prescribed values

Dy ks ﬁ, and the stiffened shell parameters, a relationship between
oR
Et
stiffened, circular cylindrical shells. )

and 2% is obtained and plotted in Figure 5 for eccentrically
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